16 research outputs found

    Behaviour based anomaly detection system for smartphones using machine learning algorithm

    Get PDF
    In this research, we propose a novel, platform independent behaviour-based anomaly detection system for smartphones. The fundamental premise of this system is that every smartphone user has unique usage patterns. By modelling these patterns into a profile we can uniquely identify users. To evaluate this hypothesis, we conducted an experiment in which a data collection application was developed to accumulate real-life dataset consisting of application usage statistics, various system metrics and contextual information from smartphones. Descriptive statistical analysis was performed on our dataset to identify patterns of dissimilarity in smartphone usage of the participants of our experiment. Following this analysis, a Machine Learning algorithm was applied on the dataset to create a baseline usage profile for each participant. These profiles were compared to monitor deviations from baseline in a series of tests that we conducted, to determine the profiling accuracy. In the first test, seven day smartphone usage data consisting of eight features and an observation interval of one hour was used and an accuracy range of 73.41% to 100% was achieved. In this test, 8 out 10 user profiles were more than 95% accurate. The second test, utilised the entire dataset and achieved average accuracy of 44.50% to 95.48%. Not only these results are very promising in differentiating participants based on their usage, the implications of this research are far reaching as our system can also be extended to provide transparent, continuous user authentication on smartphones or work as a risk scoring engine for other Intrusion Detection System

    Safety Measures for Operating Team and Operation Theater During the Current Scenario of COVID-19

    Get PDF
    The COVID-19 has become a major threat to Pakistan and worldwide, and has become a significant issue for global health, economy and societies. This rapid spread was occurred from Wuhan, China to most of the part of the world. To elaborate the concept and recommendations regarding the safety precautions in operation theater (O.T) and inside associated team during the current scenario of COVID-19. Many research and review articles were studied to collect information about Covid-19 and strategies published in various journals using the search engine, PubMed and Medline. The COVID-19 has significantly changed all aspects of daily life around the world since very start of this year 2020. SARS-CoV-2 (COVID-19), a novel corona virus, has been infected many healthcare workers. In this perspective, hospitals need a strategy to manage their resources, staff and supplies so that patients receive optimal treatment. A decision tree algorithm was developed that defined the recommendations for safety measures in operation theater and operating procedures, these include identifying and developing an isolation room, administrative measures such as transformations in working flow and procedures, introducing personal protective equipment for the employees and formulating anesthetic clinical guidelines. These control actions are essential to enhance the excellence of care provided to COVID-19 patients and to minimize the risk of spread to other patients or staff. The operating room is a dynamic environment with numerous staff like anesthesiologists, physicians, nurses, O.T attendants and technicians; however, we agree that the containment steps are important in order to improve the standard of treatment provided to COVID-19 patients and to minimize the chance of viral spread to patients other than COVID-19 and hospital staff

    Formulation, characterization and optimization of nebivolol-loaded sustained release lipospheres

    Get PDF
    Purpose: To formulate, characterize and optimize nebivolol-loaded sustained release lipospheres (LPs) using beeswax (BW) as the drug carrier.Methods: Nebivolol-loaded LPs were formulated using solvent evaporation technique (SET) and characterized. The impact of independent variables on responses such as percentage yield (PY), entrapment efficiency (EE) and drug release after 12 h (DR12) was assessed using central composite design (CCD). Numerical and graphical optimization techniques were also used to evaluate outcomes of the measured responses.Results: Twenty micron-sized (20 - 100 μm), smooth spherical LPs with good rheological properties were produced. The yield ranged from 33 (F10) to 81 % (F6), while EE ranged from 32 (F4 and F9) to 69 % (F6). The results of rheological evaluation revealed angle of repose > 24 o, Hausner’s ratio > 1.5, and Carr’s index ranging from 13 to 19 %. Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and x-ray diffraction (XRD) revealed nebivolol and BW compatibility, and the absence of possible interactions between formulation components. Duration of nebivolol release was strongly associated with BW concentration and formulation F15 showed minimum drug release (46%). Drug release was significantly higher in formulations with similar BW concentrations and low Tween-20 (T-20) concentrations (F1 and F11) than in formulations with high T-20 concentrations (F2, p < 0.05). The zeta potential of deflocculated LPs ranged from +15 to +35 mV. Nebivolol release (46 - 85 %) at pH 6.8 was significantly affected by BW concentration and it followed zero order model.Conclusion: The results obtained in this study have shown that BW is a suitable material for producing an effective sustained release formulation. The mechanism of drug release in nebivolol- loaded LPs is diffusion accompanied by erosion.Keywords: Lipospheres, Nebivolol, Beeswax, Formulation, Central composite desig

    Anti-inflammatory and anti-oxidant properties of Ipomoea nil (Linn.) Roth significantly alleviates cigarette smoke (CS)-induced acute lung injury via possibly inhibiting the NF-κB pathway

    Get PDF
    Acute respiratory distress syndrome (ARDS), a serious manifestation of acute lung injury (ALI), is a debilitating inflammatory lung disease that is caused by multiple risk factors. One of the primary causes that can lead to ALI/ARDS is cigarette smoke (CS) and its primary mode of action is via oxidative stress. Despite extensive research, no appropriate therapy is currently available to treat ALI/ARDS, which means there is a dire need for new potential approaches. In our study we explored the protective effects of 70 % methanolic-aqueous extract of Ipomoea nil (Linn.) Roth, named as In.Mcx against CS-induced ALI mice models and RAW 264.7 macrophages because Ipomoea nil has traditionally been used to treat breathing irregularities. Male Swiss albino mice (20–25 ± 2 g) were subjected to CS for 10 uninterrupted days in order to establish CS-induced ALI murine models. Dexamethasone (1 mg/kg), In.Mcx (100 200, and 300 mg/kg) and normal saline (10 mL/kg) were given to respective animal groups, 1 h before CS-exposure. 24 h after the last CS exposure, the lungs and bronchoalveolar lavage fluid (BALF) of all euthanized mice were harvested. Altered alveolar integrity and elevated lung weight-coefficient, total inflammatory cells, oxidative stress, expression of pro-inflammatory cytokines (IL-1β and IL-6) and chemokines (KC) were significantly decreased by In.Mcx in CS-exposed mice. In.Mcx also revealed significant lowering IL-1β, IL-6 and KC expression in CSE (4 %)-activated RAW 264.7 macrophage. Additionally, In.Mcx showed marked enzyme inhibition activity against Acetylcholinesterase, Butyrylcholinesterase and Lipoxygenase. Importantly, In.Mcx dose-dependently and remarkably suppressed the CS-induced oxidative stress via not only reducing the MPO, TOS and MDA content but also improving TAC production in the lungs. Accordingly, HPLC analysis revealed the presence of many important antioxidant components. Finally, In.Mcx showed a marked decrease in the NF-κB expression both in in vivo and in vitro models. Our findings suggest that In.Mcx has positive therapeutic effects against CS-induced ALI via suppressing uncontrolled inflammatory response, oxidative stress, lipoxygenase and NF-κB p65 pathway

    Anti-inflammatory and anti-oxidant properties of Ipomoea nil (Linn.) Roth significantly alleviates cigarette smoke (CS)-induced acute lung injury via possibly inhibiting the NF-KB pathway

    Get PDF
    Acute respiratory distress syndrome (ARDS), a serious manifestation of acute lung injury (ALI), is a debilitating inflammatory lung disease that is caused by multiple risk factors. One of the primary causes that can lead to ALI/ ARDS is cigarette smoke (CS) and its primary mode of action is via oxidative stress. Despite extensive research, no appropriate therapy is currently available to treat ALI/ARDS, which means there is a dire need for new potential approaches. In our study we explored the protective effects of 70 % methanolic-aqueous extract of Ipomoea nil (Linn.) Roth, named as In.Mcx against CS-induced ALI mice models and RAW 264.7 macrophages because Ipomoea nil has traditionally been used to treat breathing irregularities. Male Swiss albino mice (20-25 +/- 2 g) were subjected to CS for 10 uninterrupted days in order to establish CS-induced ALI murine models. Dexamethasone (1 mg/kg), In.Mcx (100 200, and 300 mg/kg) and normal saline (10 mL/kg) were given to respective animal groups, 1 h before CS-exposure. 24 h after the last CS exposure, the lungs and bronchoalveolar lavage fluid (BALF) of all euthanized mice were harvested. Altered alveolar integrity and elevated lung weightcoefficient, total inflammatory cells, oxidative stress, expression of pro-inflammatory cytokines (IL-10 and IL-6) and chemokines (KC) were significantly decreased by In.Mcx in CS-exposed mice. In.Mcx also revealed significant lowering IL-10, IL-6 and KC expression in CSE (4 %)-activated RAW 264.7 macrophage. Additionally, In.Mcx showed marked enzyme inhibition activity against Acetylcholinesterase, Butyrylcholinesterase and Lipoxygenase. Importantly, In.Mcx dose-dependently and remarkably suppressed the CS-induced oxidative stress via not only reducing the MPO, TOS and MDA content but also improving TAC production in the lungs. Accordingly, HPLC analysis revealed the presence of many important antioxidant components. Finally, In.Mcx showed a marked decrease in the NF-KB expression both in in vivo and in vitro models. Our findings suggest that In.Mcx has positive therapeutic effects against CS-induced ALI via suppressing uncontrolled inflammatory response, oxidative stress, lipoxygenase and NF-KB p65 pathway

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    Government's revitaliztion of Turkish Airlines (1980-1990)

    No full text
    Ankara : İhsan Doğramacı Bilkent Üniversitesi İktisadi, İdari ve Sosyal Bilimler Fakültesi, Tarih Bölümü, 2017.This work is a student project of the The Department of History, Faculty of Economics, Administrative and Social Sciences, İhsan Doğramacı Bilkent University.by Feyzullahoğlu, Burcu

    Enhancing Cadmium Tolerance and Pea Plant Health through Enterobacter sp. MN17 Inoculation Together with Biochar and Gravel Sand

    No full text
    Contamination of soils with heavy metals, particularly cadmium (Cd), is an increasingly alarming environmental issue around the world. Application of organic and inorganic immobilizing amendments such as biochar and gravel sand in combination with metal-tolerant microbes has the potential to minimize the bioavailability of Cd to plants. The present study was designed to identify the possible additive effects of the application of Enterobacter sp. MN17 as well as biochar and gravel sand on the reduction of Cd stress in plants and improvement of growth and nutritional quality of pea (Pisum sativum) plants through the reduction of Cd uptake. Pea seeds were surface sterilized then non-inoculated seeds and seeds inoculated with Enterobacter sp. MN17 were planted in artificially Cd-polluted soil, amended with the immobilizing agents biochar and gravel sand. Application of biochar and gravel sand alone and in combination not only improved the growth and nutritional quality of pea plants by in situ immobilization but also reduced the uptake of Cd by plant roots and its transport to shoots. However, microbial inoculation further enhanced the overall plant health as well as alleviated the toxic effects of Cd on the pea plants. These soil treatments also improved rates of photosynthesis and transpiration. The combined use of biochar and gravel sand with bacterial inoculation resulted in an increase in plant height (47%), shoot dry weight (42%), root dry weight (57%), and 100 seeds weight (49%) as compared to control plants in Cd contaminated soil. Likewise, biochemical constituents of pea seeds (protein, fat, fiber, and ash) were significantly increased up to 41%, 74%, 32%, and 72%, respectively, with the combined use of these immobilizing agents and bacterium. Overall, this study demonstrated that the combined application of biochar and gravel sand, particularly in combination with Enterobacter sp. MN17, could be an efficient strategy for the remediation of Cd contaminated soil. It could support better growth and nutritional quality of pea plants
    corecore